
MCE 526: Mechatronic Systems Design II Digital Hardware and MIcrocontrollers

Department of Mechanical Engineering Page 1 of 2

DIGITAL HARDWARE AND MICROCONTROLLERS

Introduction

Digital hardware can perform a variety of functions in mechatronic system. Signal

acquisition and processing, system monitoring and control, switching, and information

display are such functions. Hardware implementation involves carrying out simple

functions, actions, and tasks without any form of programmability. More complex and

variable mechatronic tasks may require programmable digital devices (embedded digital

computers) that are known as Microcontrollers; this is called software implementation. Of

course, software implementation also requires digital logic hardware and some aspects of

hardware implementation.

Hardware implementation has the following advantages:

 High speed

 Simplicity

 Low cost when produced in mass

 Smaller size

However, hardware implementation has a fixed function and this makes it to lack flexibility

but software implementation on the other hand provides flexibility that comes with

programmability and capability of implementing very complex task. Some of the

disadvantages of software implementation are:

 Relatively low speed

 Larger size

 Higher cost

Digital devices, especially digital computers use digits (according to some codes) to

represent information and some logic to process such information. In binary (or, two-state)

logic, a variable can take one of two discrete states: True (T) or false (F). In binary number

system, each digit can assume one of only two values: 0 or 1. A digital device may have to

process both logical quantities and numerical data. The purpose of a digital circuit might be

to turn on or off a device depending on some logical conditions. In some application, a

MCE 526: Mechatronic Systems Design II Digital Hardware and MIcrocontrollers

Department of Mechanical Engineering Page 2 of 2

digital circuit might have to perform numerical computations on a measured signal

(available in digital form) and then generate a control signal (in digital form). A digital

device can perform such numerical functions as well, using the binary number system

where each digit can assume one of only two values: 0 or 1

A digital circuit converts digital inputs into digital outputs. There are two types of logic

devices, classified as either Combinatorial logic devices or Sequential Logic devices.

Combinatorial logic devices are static devices where the present inputs completely (and

uniquely) determine the present outputs without using any past information (history) or

memory. In contrast, the outputs of sequential logic devices depend on the past values of

the inputs as well as the present values. In other words, they depend on the time sequence

of the input data, and hence some form of memory would be needed.

Microcontrollers are miniature digital computers of somewhat limited functionality that

can be embedded in various locations of a mechatronic system.

Number Systems and Codes

The base or the radix (denoted by R) of a number is the maximum number of discrete

values each digit of a number can assume. This is also equal to the maximum number of

different characters (symbols) that are needed to represent any number in that system. For

decimal or denary, R = 10, for binary system R = 2, for octal system R = 8, and for the

hexadecimal system R= 16. We are quite familiar with the decimal system. The origin of

this system is perhaps linked to the fact that a human being has 10 fingers. Also, 10 is a

convenient and moderate number, which is neither too large nor too small. However, the

binary number is what is natural for digital logic devices and digital computers.

CSE 271 — Introduction to Digital Systems
Supplementary Reading

Representation of Signed Numbers

There are many ways to represent signed numbers. Typically the MSB of a bit string is used to represent
the sign (the sign bit). Since the MSB is used to indicate the sign (0=plus, 1=minus), an n-bit number can
only represent nonnegative numbers from 0 to 2n−1 − 1 (instead of 0 to 2n − 1 as for unsigned numbers).

To ease the implementation of subtraction using digital circuits, we would also impose

Requirement A: The subtraction N1−N2 can be carried out by the addition of the two numbers N1 and
(−N2). �

Here the addition is carried out similarly to that of unsigned numbers. If the Requirement A is satisfied
by the representation, then in designing a digital system, subtraction circuits need not be separately designed
once the addition circuits are available.

Let us look at the following candidate representations for signed numbers.

Signed-Magnitude Representation

In the signed-magnitude representation, a number consists of a magnitude string and a symbol indicating
the sign of the number. The sign symbol is at the MSB. The rest of the bits form the magnitude and are
interpreted similarly to unsigned numbers. For example, the 4-bit words 01102 = 610, 11012 = −510. Now
consider 6−5. Direct subtraction yields 0110−0101 = 0001. However, if we express it as 6+(−5) and carry
out the addition, we have 0110 + 1101 = 10011 and so the 4-bit sum word is 0011 (due to the 4-bit word
length). Since 0011 �= 0001, the Requirement A is not satisfied.

1’s Complement Representation

In the 1’s complement representation, a nonnegative number is represented in the same manner as an
unsigned number. A negative number (−N) is represented by the 1’s complement of the positive number
N . The 1’s complement of an n-bit number N is obtained by complementing each bit of N (or equivalently,
by subtracting it from 2n − 1). For example, the 4-bit words 01102 = 610, 01012 = 510, and 10102 = −510.
Now consider 6− 5. Direct subtraction yields 0110− 0101 = 0001. However, if we express it as 6 + (−5) and
carry out the addition, we have 0110 + 1010 = 10000 and so the 4-bit sum word is 0000 (due to the 4-bit
word length). Since 0000 �= 0001, the Requirement A is not satisfied.

2’s Complement Representation

Now we introduce the 2’s complement representation which satisfies the Requirement A. Due to this reason,
it is the most commonly used representation for signed binary numbers. In the the 2’s complement number
system, we have the following representations.

Nonnegative Numbers: Represented in the same manner as an unsigned number.

Negative Numbers: A negative number (−N) is represented by 2’s complement of the positive number N .

The 2’s complement of an n-bit number N is obtained by subtracting it from 2n. Note 2n − N =[
(2n − 1)−N

]
+ 1 and the operation

[
(2n − 1)−N

]
entails the complementing of each bit of N . So the 2’s

complement of N can simply be obtained by complementing each bit of N and then adding 1. The followings
are some examples of 2’s complement representations.

Examples. The 2’s complement representation of the decimal number 6 is 0110. The 2’s complement
representation of −6 is obtained by the following procedure.

1

001 of 007

10

 6

1010 =

1
1001

+

= 0110
complement bits

−6

10

Note that the MSB 1 indicates that 1010 represents a negative number. �

In fact, the 2’s complement number system negates a number by taking its 2’s complement. So the
complement operation can also be applied to a negative number representation to obtain the corresponding
positive number representation1. For example

 −6

1+

complement bits

10

10 = 1010
0101

0110 = 6

Remarks.

(a) Given a word size of n bits, the range of 2’s complement binary numbers is −2n−1 through 2n−1 − 1.

(b) The 2’s complement of an n-bit all 0 string is itself.

(c) The 2’s complement of an n-bit string with all 0’s except for the MSB being 1 is itself. For example, the
complement of a 4-bit word 1000 is 1000 and it represents −23 = −8 and has no positive counterpart
(since 8 is not with the range). �

Decimal Equivalent Values for 2’s Complement Binary Numbers. Given a binary number in 2’s
complement representation, there are two methods for determining its decimal equivalent value.

Method 1: If the MSB is 0, then the number is nonnegative and its value can be determined similarly to
an unsigned number. If the MSB is 1, then the number is negative and its absolute value can be
determined by taking the 2’s complement of the given negative number. For example, given a 4-bit
number N = 1101. We apply the following procedure to determine the 2’s complement of N (i.e., the
negation of N).

(2’s complement of N)

1+

complement bits

10

= 1101
0010

0011 = 3

 N

Hence the decimal value of N is −310, i.e., 11012 = −310.

Method 2: The decimal value for an n-bit 2’s complement binary number is computed the same way as for
an unsigned number using the formula of weighted summation of powers of 2, except that the power
term corresponding to the MSB is (−2n−1) instead of 2n−1. For example, the decimal value of the
4-bit number N = 1101 can be computed as

N = 1 × (−23) + 1 × 22 + 0 × 21 + 1 × 20 = −310

The justification of Method 2 is given in the footnote2.
1To justify this, note that the 2’s complement representation of an n-bit negative number (−N) is given by 2n−N .

Now take the 2’s complement of 2n−N yields 2n−(2n−N) = N . This is equivalent to saying that the 2’s complement

of the representation of (−N) gives us the representation of the corresponding positive number N .
2For positive numbers, the MSB is 0 so it has no contribution in evaluating the value. While for a negative number

(−N), its 2’s complement representation is the unsigned binary representation for D = 2n−N . Since the decimal value

for D as an unsigned number is D =
Pn−1

i=0 di·2i with dn−1 = 1, we then have −N = D−2n = 1×(−2n−1)+
Pn−2

i=0 di·2i.

2

002 of 007

Sign Extensions. When dealing with hardware, we often need to increase the number of bits required to
represent a signed number. In general, to extend an n-bit number to an m-bit number (m > n) which has
the same decimal value, we simply pad the given n-bit number with (m− n) copies of its MSB to its left to
form the corresponding m-bit number. For example, given a 4-bit number 11102 = −210, we can extend it
to an equivalent 8-bit number 111111102 = −210. Similarly, we can extend 00112 = 310 to 000000112 = 310.

Comparison of Different Representations

Now let us compare the aforementioned three representations by studying the following table for 4-bit
numbers.

Decimal 2’s Complement 1’s Complement Signed-Magnitude
7 0111 0111 0111
6 0110 0110 0110
5 0101 0101 0101
4 0100 0100 0100
3 0011 0011 0011
2 0010 0010 0010
1 0001 0001 0001
0 0000 0000 or 1111 0000 or 1000
-1 1111 1110 1001
-2 1110 1101 1010
-3 1101 1100 1011
-4 1100 1011 1100
-5 1011 1010 1101
-6 1010 1001 1110
-7 1001 1000 1111
-8 1000 — —

From the above table, it can be observed why the 2’s complement is preferred for arithmetic operations.
If we start with 10002 (−810) and count up, we see that each successive 2’s complement number all the way
to 01112 (710) can be obtained by adding 1 to the previous one, ignoring any carries beyond the fourth bit
position. The same cannot be said of signed-magnitude and 1’s complement numbers. Because ordinary
addition is just an extension of counting, 2’s complement numbers can thus be added by ordinary binary
addition, ignoring any carries beyond the MSB. The result will always be the correct sum as long as the
range of the number system is not exceeded. This helps explain why the Requirement A is satisfied by
2’s complement numbers. Moreover, note that the range of 2’s complement numbers is larger than that of
signed-magnitude and 1’s complement (for which 010 has 2 representations).

2’s Complement Addition and Subtraction

Since 2’s complement numbers satisfy the Requirement A mentioned at the beginning of this handout, we
only need to consider the addition of 2’s complement numbers. As we have mentioned, 2’s complement
numbers can thus be added by ordinary binary addition. Some examples are given on the next page.

In Examples (e) and (f), the result is incorrect since the decimal value of the sum exceeds the range of
4-bit 2’s complement number system. In such cases, overflow is said to occur. As can be observed from the
examples, in general, the addition of 2’s complement numbers has the following properties.

(a) Addition of two numbers with different signs can never produce overflow and thus the result is always
correct (ignoring the carries beyond the MSB). Such is the case for Examples (a) and (b).

3

003 of 007

(b) An addition overflows if the two addends’ signs are the same, but the sum’s sign is different from the
addends. Such is the case for Examples (e) and (f). In Examples (c) and (d), the sums have the same
sign as the addends, so the results are correct.

(c) Finally, here is an easy method to determine whether overflow occurs: overflow occurs if and only if
the carry bit cin into and cout out of the sign position (i.e., the MSB) are different. Such is the case
for Examples (e) and (f).

−5

+ +

corresp.
dec. oper.

correct result

0100
1001

 1101 = −3

+4

−3

Example (b)

+ +

corresp.
dec. oper.

correct result

Example (c)

+3
+4

+7 +7 0111 =

0100
0011

+ +

corresp.
dec. oper.

correct result

Example (d)

1110
1010

11000 = −8 −8

−2
−6

1 11

+

1

+

corresp.
dec. oper.

+ +

corresp.
dec. oper.

Example (e) Example (f)

−3
−6

−9

+5
+6

+11 +710111 =

1101
1010

incorrect result incorrect result

0101
0110

 1011 =

+
0110
1101

10011 =

1 1

+3 +3

+6
+

corresp.
dec. oper.

Example (a)

correct result

−3 −7

1

4

004 of 007

1

How can negative numbers be represented using only binary 0’s and 1’s so that a computer can

“read” them accurately?

The concept is this: Consider the binary numbers from 0000 to 1111 (i.e., 0 to 15 in base ten).

 0001 0111 will represent the positive numbers 1 7 respectfully

 and, 10011111 will represent the negative numbers 7 1, respectfully.

In a computer, numbers are stored in registers where there is reserved a designated number of

bits for the storage of numbers in binary form. Registers come in different sizes. This handout

will assume a register of size 8 for each example.

It is easy to change a negative integer in base ten into binary form using the method of two’s

complement.

First make sure you choose a register that is large enough to accommodate all of the bits

needed to represent the number.

Step 1: Write the absolute value of the given number in binary form. Prefix this number with 0
indicate that it is positive.

Step 2: Take the complement of each bit by changing zeroes to ones and ones to zero.
Step 3: Add 1 to your result. This is the two’s complement representation of the negative

integer.

EXAMPLE: Find the two’s complement of 17

Step 1: 1710 = 0001 00012

Step 2: Take the complement: 1110 1110

Step 3: Add 1: 1110 1110 + 1 = 1110 1111.

Thus the two’s complement for -17 is 1110 11112. It begins on the left with a 1, therefore we

know it is negative.

Now you try some:

Find the two’s complement for

a. 11

b. 43

c. 123

To translate a number in binary back to base ten, the steps

are reversed:

Step 1: Subtract 1: 1110 1111 1 = 1110 1110

Step 2: Take the complement of the complement: 0001 0001

Step 3: Change from base 2 back to base 10 16 + 1 = 17

Step 4: Rewrite this as a negative integer: 17

Two’s Complement
005 of 007

2

This suggests a new way to subtract in binary due to the fact that subtraction is defined in the
following manner:
 X – Y = X + (-Y)

EXAMPLE 1: Subtract 17 from 23, as a computer would, using binary code.

Given a register of size 6, 23 – 17 = 23 + (-17) becomes

 0001 0111 + 1110 1111 = 10000 0110. (Verify both the binary form of 23 and the

addition.) Since this result has 9 bits, which is too large for the register chosen, the leftmost bit

is truncated, resulting in the binary representation of the positive (it starts with a 0) integer

00000110. When this is changed to a decimal number, note that 4 + 2 = 6 which is the answer

expected.

Note that a register of size eight can only represent decimal integers between 2(8-1) and +2(8-1)

and, in general, a register of size n will be able to represent decimal integers between 2(n-1) and

+2(n-1)

EXAMPLE 2: Subtract 29 from 23, as a computer would, using binary code.

Again we use a register of size 8, so that 23 – 29 = 23 + (-29) becomes

 0001 0111 + 1110 0011 = 1111 1010. (Verify both the binary form of 29 and the
addition.) Note that no truncation of the leftmost bit is necessary here. The result is the
negative (it starts with a 1) integer 1111 1010. This needs to be “translated” to change it back
to a decimal (see the steps on how to do this in the box above). Hence, going backwards,
1111 1010 – 1 = 1111 1001. The complement of which is 0000 0110 which is 6 in decimal.
Negating this we get -6 as expected.

Now you try some:

Subtract each, as a computer out, using binary

code using registers of size 8.

a) 26 – 15

b) 31 – 6

c) 144 – 156

d) Make up your own exercises as needed.

006 of 007

3

ANSWERS

11 = 1111 01012

43 = 1101 01012

123 = 1000 01012

26 – 15 = 26 + (-15) = 0001 1010 + 1111 0001 = 10000 1011, and truncating the leftmost 1 to

remain within a register of 8, the answer is 0000 10112

31 – 6 = (31) + (6) = 1110 0001 + 1111 1010 = 11101 1011, and truncating the leftmost 1

to remain within a register of 8, the answer is 1101 10112

144 – 156 = 144 + (156) = 1001 0000 + 0110 0100 = 1111 0100, which remains within the

register of 8 bits (so nothing gets truncated), thus the answer is 1111 01002.

007 of 007

	Binder1
	Lecture 6. Digital Hardware and MIcrocontrollers
	scan0001

	Lecture 6
	twoscomp
	DM3_TwosComplement_BP_9_22_14

